15 - 3 Sum
#medium
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [ [-1,-1,2],[-1,0,1] ]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [ [0,0,0] ]
Explanation: The only possible triplet sums up to 0.
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort( nums.begin(), nums.end() );
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for ( int i = 0; i < nums.size(); i++ ) {
if ( nums[i] > 0 ) return result;
if ( i > 0 && nums[i] == nums[i-1] ) continue;
int left = i + 1;
int right = nums.size() - 1;
while ( right > left ) {
if ( nums[i] + nums[left] + nums[right] > 0 ) right--;
else if ( nums[i] + nums[left] + nums[right] < 0 ) left++;
else {
result.push_back( {nums[i], nums[left], nums[right] });
// 去重邏輯應該放在找到一個三元組之後,對b和c去重
while ( right > left && nums[right] == nums[right-1] ) right--;
while ( right > left && nums[left] == nums[left+1] ) left++;
right--;
left++;
}
}
}
return result;
}
};